Showing posts with label Dimensi Tiga. Show all posts
Showing posts with label Dimensi Tiga. Show all posts
Sunday, August 12, 2018

Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)

Jangan lupa membaca artikel tentang bisnis di > Informasi bisnis terbaik 2020.

ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)Ini ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum 2013, mungkin kita bisa diskusikan, karena di sekolah mungkin tidak semua nanti soal ini akan dibahas,... kata Tika kepada Mat.

Baiklah, mana coba kita baca bersama bukunya..., balas Mat, ...lalu Tika coba buka buku SMA Kelas XII Kurikulum 2013 Halaman 25.

Soal Nomor 1:

Perhatikan gambar berikut:
ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
a. Dari Gambar $(a)$, tentukan jarak dari titik $A$ ke $D$.
b. Dari Gambar $(b)$, tentukan jarak titik $P$ terhadap garis $g$.
c. Dari Gambar $(c)$, tentukan jarak titik $P$ pada bidang-$K$.
Alternatif Pembahasan:

Kalau melihat soal nomor 1 ini sepertinya kita diajak untuk memahami konsep jarak itu, yaitu Jika AB adalah yang terpendek antara semua ruas garis penghubung titik-titik itu, maka panjang ruas garis AB disebut jarak.

  • $(a)$, jarak dari titik $A$ ke $D$ adalah panjang $AD$ yaitu $AC+CD=$$17\ m +29\ m=46\ m$
  • $(b)$, jarak titik $P$ terhadap garis $g$ adalah panjang $PP_{1}$ karena $P_{1}$ terletak pada garis $g$ dan $PP_{1}\ \perp g$.
  • $(c)$, jarak titik $P$ pada bidang-$K$ adalah $PP_{1}$ karena $P_{1}$ terletak pada garis $RP_{1}$ atau garis $QP_{1}$ dimana garis $RP_{1}$ atau garis $QP_{1}$ terletak pada bidang-$K$ dan $PP_{1} \perp QP_{1}$ atau $PP_{1} \perp RP_{1}$.

Soal Nomor 2:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $9\ cm$. Buat ilustrasi kubus tersebut. Tentukan langkah menentukan jarak titik $F$ ke bidang $BEG$. Kemudian hitunglah jarak titik $F$ ke bidang $BEG$.
Alternatif Pembahasan:

Pertama kita pastinya harus bisa menggambar kubus $ABCD.EFGH$ dan bidang $BEG$

ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Langkah-langkah menentukan jarak titik $F$ ke bidang $BEG$, kurang lebih dapat kita lakukan seperti berikut ini;
  • Pertama, kita tarik garis pada bidang $BEG$ misalkan kita sebut garis $BB'$.
  • Kedua, kita tarik garis dari $F$ sehingga tegak lurus pada garis $BB'$ misalkan kita sebut garis $FF'$.
  • Ketiga, karena $FF' \perp BB'$ maka jarak titik $F$ ke bidang $BEG$ adalah panjang $FF'$.
ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung jarak titik $F$ ke bidang $BEG$ yaitu panjang $FF'$, kita membutuhkan beberapa data tambahan, antara lain;
Karena $\triangle BEG$ adalah samakaki maka $BB' \perp EG$ dan $B'$ adalah titik tengah $EG$,
sehingga berlaku $BB'=\sqrt{BG^{2}-B'G^{2}}$
$BB'=\sqrt{(9\sqrt{2})^{2}-(\frac{9}{2}\sqrt{2})^{2}}$
$BB'=\sqrt{162-\frac{81}{2}}$
$BB'=\sqrt{\frac{324}{2}-\frac{81}{2}}$
$BB'=\sqrt{\frac{243}{2}}$
$BB'=\frac{9}{2}\sqrt{6}$

Coba perhatikan $\triangle BFB'$ adalah segitiga siku-siku di $F$, sehingga kita bisa menghitung luasnya denga cara;
$[BFB']=\frac{1}{2} \times BF \times FB'$
$[BFB']=\frac{1}{2} \times 9 \times \frac{9}{2} \sqrt{2}$
$[BFB']=\frac{81}{4} \sqrt{2}$

Luas $\triangle BFB'$ dapat juga kita hitung luasnya dengan cara;
$[BFB]=\frac{1}{2} \times BB' \times FF'$
$[BFB]=\frac{1}{2} \times \frac{9}{2}\sqrt{6} \times FF'$
$\frac{81}{4}\sqrt{2}=\frac{1}{2} \times \frac{9}{2}\sqrt{6} \times FF'$
$\frac{81}{4}\sqrt{2}=\frac{9}{4}\sqrt{6} \times FF'$
$81\sqrt{2}=9\sqrt{6} \times FF'$
$9\sqrt{2}=\sqrt{6} \times FF'$
$FF'=\frac{9\sqrt{2}}{\sqrt{6}}$
$FF'=\frac{9}{\sqrt{3}}$
$FF'=3\sqrt{3}$

Jarak titik $F$ ke bidang $BEG$ adalah $3 \sqrt{3}$.

Sebagai catatan; jika panjang rusuk kubus di rubah panjangnya misal jadi $a$, maka jarak titik ke bidang dengan posisi sama seperti soal diatas adalah $\frac{1}{3} a \sqrt{3}$. Penjelasannya silahkan simak di Pertanyaan Tentang Jarak Titik ke Bidang [Geometri] atau Alat Peraga Rangka Bangun Ruang Terbuat Dari Kertas.


Soal Nomor 3:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $a$. Jika titik $P$ terletak pada perpanjangan $AB$ sehingga $PB = 2a$, dan titik $Q$ pada perpanjangan $FG$ sehingga $QG = a$.
a. Buatlah ilustrasi dari masalah di atas.
b. Tentukan $PQ$.
Alternatif Pembahasan:

Jika kita gambarkan ilustrasi dari masalah diatas kurang lebih seperti berikut ini;

ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung $PQ$ kita perlu beberapa garis bantu, antara lain;
Titik potong perpanjangan garis $EF$ dengan garis yang tegak lurus $AP$ di $P$ kita misalkan Titik $R$. Lalu jika kita hubungkan titik $P,\ Q, R$ maka akan kita peroleh segitiga $PQR$ yang siku-siku di $R$.
ni ada beberapa soal tentang dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
$PQ=\sqrt{PR^{2}+QR^{2}}$
dimana $PR=a$ dan $QR=\sqrt{QF^{2}+FR^{2}}$
$QR=\sqrt{(2a)^{2}+(2a)^{2}}$
$QR=\sqrt{8a^{2}}$
$QR=2a\sqrt{2}$